Adaptive Tree Proposals for Bayesian Phylogenetic Inference
نویسندگان
چکیده
منابع مشابه
Guided tree topology proposals for Bayesian phylogenetic inference.
Increasingly, large data sets pose a challenge for computationally intensive phylogenetic methods such as Bayesian Markov chain Monte Carlo (MCMC). Here, we investigate the performance of common MCMC proposal distributions in terms of median and variance of run time to convergence on 11 data sets. We introduce two new Metropolized Gibbs Samplers for moving through "tree space." MCMC simulation ...
متن کاملCalibrated Birth–Death Phylogenetic Time-Tree Priors for Bayesian Inference
Here we introduce a general class of multiple calibration birth-death tree priors for use in Bayesian phylogenetic inference. All tree priors in this class separate ancestral node heights into a set of "calibrated nodes" and "uncalibrated nodes" such that the marginal distribution of the calibrated nodes is user-specified whereas the density ratio of the birth-death prior is retained for trees ...
متن کاملParallel algorithms for Bayesian phylogenetic inference
The combination of a Markov chain Monte Carlo (MCMC) method with likelihood-based assessment of phylogenies is becoming a popular alternative to direct likelihood optimization. However, MCMC, like maximum likelihood, is a computationally expensive method. To approximate the posterior distribution of phylogenies, a Markov chain is constructed, using the Metropolis algorithm, such that the chain ...
متن کاملPolytomies and Bayesian phylogenetic inference.
Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short branch lengths and low values for non-Bayesian measures of...
متن کاملAdaptive Bayesian Inference
Motivated by stochastic systems in which observed evidence and conditional dependencies between states of the network change over time, and certain quantities of interest (marginal distributions, likelihood estimates etc.) must be updated, we study the problem of adaptive inference in tree-structured Bayesian networks. We describe an algorithm for adaptive inference that handles a broad range o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Systematic Biology
سال: 2021
ISSN: 1063-5157,1076-836X
DOI: 10.1093/sysbio/syab004